jim rozen
Diamond
- Joined
- Feb 26, 2004
- Location
- peekskill, NY
Good paper, thank you.
The grinder I worked with was an old Levin-Tsugami OD instrument grinder. Quite rare. The wheel spindle looked very similar to your taper design, but had tapers on both ends, not rolling bearings. The oil was crazy thin, like water thin. There may have been a lower Velocite number back then, but I can't find any reference to it. Though it may have been Velocite #3, I remember something like #1 or #2. Thinnest stuff I've ever seen, but that's what worked correctly with the taper design.
This is not really a "pump" this just allows oil to distribute across the bearing, the actual pressurization is done by the eccentricity of the bearing causing pressure to build as the shaft spins and the oil get "squished" through the pinch point-therefore creating float and load-stiffnessThe pump is actually a spiral groove cut into the shaft. It pumps as it spins... But as another poster said the dynamic behaviour will be different. There are various effects at speed like the oil wedge etc
The brand is Jotes Spc20a, the spindle is made by a Polish bearing manufacturer FŁT (also known as PBF). BTW, it is a machine made very long time ago.
Here is a spindle drawing:
View attachment 394357
The zigzag shape on the shaft is the pumping part. It is supposed to use angular contact bearings 7206 class 5 in the back. It runs in Mobil Velocite 6.
I do give the details above, but they are really just a curiosity. I'm almost certain people that know anything about this specific spindle will not say a word here, because any published information affects their ability to charge pretty penny for rebuild services. One of the reasons why I started this rebuild myself is to put more information about this spindle on the net. It is an old model. Many people consider it's "plain" front bearing inferior and there is a market here in Poland for a rolling bearing replacement service for this one and similar spindles.
Interesting. I called it a "pump" in layman's terms as it certainly is a lot more effective in sending that oil to the front of the bearing than straight grooves and a whick supplied from above. What I failed to mention is that the shaft has a smaller opposing "pump" at the very end. I imagine it is there to prevent oil spilling out through the front clearance. As what looks like an oring groove, doesn't have any prints. It does work unless one over fills it with oil.This is not really a "pump" this just allows oil to distribute across the bearing, the actual pressurization is done by the eccentricity of the bearing causing pressure to build as the shaft spins and the oil get "squished" through the pinch point-therefore creating float and load-stiffness
Dont expect to find anyone who knows this exact spindle, I agree with you there. But believe it or not, there are people that come here to give out data and help others understand what they are looking at. Sometimes its enough to get you over the hurdles and complete a successful rebuild, sometimes it shines a light on how complicated this really is and the tooling required to do it correctly, therefore avoiding expensive mistakes. Either way getting the info out there is good for the machine owner IMO.
Thank you for the proper name for this bearing design. At least now I have a term to search books etc with :-)Hydrostatic and Hydrodynamic bearings have their place, and when done correctly are still superior to a roller bearing in a few ways-depending on the application. The reason some people convert them is cost, part availability, and knowledge to service correctly. Almost never will the roller conversion be as rigid, repeatable or have the same life span as a properly built hydro spindle, so yes there are compromises.
This spindle uses a tapered tri-lobe design, shiguya okuma and a few others use the same style, usually bronze of some sort. Sometimes babbited, but the philosophy remains the same. Very finicky and sensitive to set correctly without deforming (destroying) the bearing. Usually when these are damaged, they need to be replaced, otherwise you can open them up a tad and make the shaft bigger to compensate.
Runout; theoretically a hydro spindle should produce virtually zero runout (although there is no such thing), or more accurately rotation concentricity should be held, within the limits of the roundness of the shaft, pressure consistent, and all other things being right. Now this doesnt mean at the tooling (grinding) surface you will have zero runout. What you should have is repetitive runout, virtually zero non-repetative runout. To dumb this down a tad, the shaft can be spinning perfectly true, but if the od taper that your hub sits on had 5 microns runout relative to the journals, you will still have the 5 microns.
In terms of dynamic runout, no not under load by grinding, but having the correct load at the bearing supplied by having the clearances all set right. When everything is set right hydrostatic bearings are super rigid, thats why they are used, they dont deflect much at all when working load is applied. My point is that runout, static or dynamic means nothing unless you absolutely know youre "loaded" (this term kid of confuses the topic-maybe stiffness is correct would be clearer?) -- essentially building the correct amount of pressure in the bearing to be held rigidly on center.
I sure would like to see that thread. Was it on this forum? Perhaps you remember some part of the title? Or specific wording used anywhere in the thread?Somewhere I was sure I had a picture of a bearing distinctly showing the lobed clearances but damned if I can find it now. I'd saved it more specifically because the poster was showing how to do the ID scraping. Still the 45 degrees from the axial line and alternating directions. I think he had gotten the whole thing to the right contact spots and had then followed with the slight relieving of areas that finally develop the hydrodynamic forces when rotating.
A answer to TGTool's question about the lobed journal bearing:
The machining process is not complicated. The lobed bearing is formed with a set of circular arcs. The bearing is first bored out on a jig bore to the diameter of the journal. The cutting radius of the boring bar is then increased by some small amount and held fixed. The bearing is then offset with, for example, .001" of table travel, and the boring bar is run through. The bearing is then indexed 120 degrees for a three lobed bearing and the boring bar is run through at each of the indexes. The profile of the lobed bearing will have its smallest radial journal clearance at the midpoint of the lobe. This allows the journal to be run in either direction without changing the oil pressure distribution in the bearing. My reference shows a oil groove machined between each lobe.
This description comes from a book " Design and Construction of Machine Tools by H.C. Town, 1971" It is describing a bearing used by a company called Gleitlager G.m.b.h. on page 81
This is interesting. I read a text where they didn't say anything about the shaft diameter to clearance ratio, but they just stated "above 1800 rpm oil whirl starts to become a problem with circular bearings so other configurations such as crushed eclipse, tri-lobe etc are used instead" . The designers of this spindle must have thought similarly so they decided to go to the trouble of making that difficult to adjust tri lobe bearing instead of a circular one, like what I have in my lathe that reaches 1200rpm only.i researched the oil whirl problem a bit years ago, and found that the literature documents it as a problem when the diameter to oil clearance greatly exceeds the 1:1000 ratio commonly found in precision machine tools. and equally as much the literature talks about the fundamental frequency of the system and the journal bearing stiffness and dampening ratios. often systems are setup to cross over the resonances quickly and pass over them.
your 1-2 inch diameter lathe or grinder spindle with its .0001 to .002" clearance won't hit oil whirl numbers until the rpm exceeds practical limits.
I just found out what oil whirl is when researching that "weird" bearing before I decided how to refurbish it. If I had vibration or any other unexpected movement in the shaft I'd assume out of balance or a resonance condition most likely. There are really cool android aoos that let you use the accelerometer in your phone to measure vibration very precisely and desplay it as a frequency/power chart or in other ways. The one I use is VibSensor.and i suspect many who think their machine had that oil whirl problem.. what really happened was it was out of balance and the rpm matched the fundamental resonance of the stiffness of their system. which is often lower than you think. some folks run 2-3" diameter main bearing crank shafts at 3 times the speed any engine lathe or surface grinder has ever run at, and they don't have a fundamental frequency oil whirl problem.
Yes, I was too, I thought that's just silly, but I see no other explanation. At the end of the day when adjusting it we're squishing a solid tube of phosphor bronze that has walls thinned in a way that it squishes into a tri lobed star. But the "thin" wall thickness is still over 3mm. A lack of slots cut in that bushing to allow it to close easily is one of the "weird" features of this bearing.i am concerned it takes so much torque to affect the bearing shown in post #29.
You can just leave it and run the spindle for a couple of hours or gently tap the front of the nut with a brass rod. It doesn't take much for it to spring back. It was like this even before I applied moly to both surfaces. It usually behaves like thisif it takes 120 foot pounds to tighten it, how do you get that tapered bearing piece out of the tapered bore?
Wow, that's a lot of torque... I have my share of cracked castings too. Thankfully nothing important.i once applied 800 foot pounds of torque to a 2.5" diameter maybe 12 tpi bearing retainer.. it turned out to be left handed and the casting blew up. oops....
I run velocite no 10 in my lathe. 2in shaft at 1200rpm,similar clearance. The lathe does warm up if used all day long on top speed. Not excessively so. It feels warm to touch, that's all. Maybe 40C?i run low viscosity synthetic ATF which has a viscosity similar to velocite 6 in a southbend 9. it can hit 1500 rpm without warming up much, and has about a .001" clearance on a 1.875" spindle iirc.
This is an interesting idea. I don't think I'll do that as it is fine for me now, but it sure is something to think of in case it's needed.if you can't get the clearance to close up as much as you need then run thicker oil and see if it works and doesn't warm up. the run out during operation will be as low as the spindle is round.. the oil film is self stabilizing and self centralizing, although under load the center point moves on you, but its a small predictable amount
Yes, but detecting that movement is not that easy (especially when small). As others mentioned it should ideally be done under load (so not just spinning, but during grinding). Of course surface finish can tell you a lot, but having numbers would be neat.any kind of dynamic movement from one turn to the next needs to be investigated if its the fundamental resonance of the shaft and the grinding wheel. its not oil whirl with surface grinder or lathe spindle oil clearances.
The text I read said it is half the speed of rotation.further more, regarding the oil whirl problem.. its not every turn. its a harmonic as i understand it. in order to make it work you have to have a swirling mass of oil follow the shaft round and round..
Running it slowly? My grinder has only one speed... (no vfd). If I was bothered by that constriction I'd grind the ID of that bushing or lap it. But I still think this is a useful idea to have in ones toolbox.you can detect this by measuring the vibration and sweeping the rpm. you then have to account for the handful of different modes of vibration that could be happening at various frequencies. change the thickness or diameter of the grinding wheel and then test again.
thicker oil, running it slowly, will not damage anything. if problems go away.... well... problem solved.
As a novice bearing scraper only half way through my first lathe spindle bearings I can appreciate the situation you’re in. Trying to measure runout in worn out, mis-shaped bearings paired with a spindle of unknown condition is disappointing at best. You sound dedicated to the task, and in no rush for immediate results, so I’ll pass on the highpoints of my very limited experience - not for technical expertise, but for encouragement.The only slight issue remaining, but I haven't noticed it affecting anything, is than perhaps I could set the clearance lower if the bushing didn't wear together with the shaft in a way that the bore constricts very slightly around mid point. If I did set that clearance lower, the resulting increase in stiffness could be beneficial when taking bigger cuts.
Hello, Not being at the shop to talk to my 'Sleeve bearing' guy to verify clearances, I am a manual machinist at a electric motor shop.But just going by what you have sounds reasonable to run. Definitely run without a wheel on it first, and just do the touchy-feely around it. Without a wheel you may get some vibration. If it passes that, install wheel and dress it. Let it run for 10-15 minutes or so, and dress the wheel again.By that time all such temps and oil should be happy, and by dressing the wheel you are actually balancing it.Start by grinding the magnet to make parallel to head.If you can find some tool steel(O-1,D-2, or such) nothing soft, and start grinding. look at the pattern you are getting(you really shouldn't see one).I'm in a process of reconditioning an old surface grinder that uses a hydrodynamic bearing as its main spindle bearing. The problem is that at speed the spindle relies on an oil film to provide rigidity and support. So slow turning by hand results in very weird measurements. I've been trying to run the spindle for a bit, hit the off button and try to measure as it comes to a stop, but I'm not entirely sure my test indicators can measure the full extent of a still fairly fast movement.
I'm supposed to set TIR to under 4 tenths (10 microns), but I can't if I'm not able to measure it properly... The machine manual doesn't specify any special method of measurement. There is a, drawing showing a meter touching the front taper and that's it. There are people that rebuild those spindles for a living and they are understandably tight lipped. So I decided to ask here.
For those interested in the details. The bearing uses a stationary cast iron taper into which a solid bronze bushing is pulled in by a clearance adjustment nut. This bearing is different from your typical plain bronze bearing in few ways. The most important are:
- no oil supply notches on the bronze bushing. Instead the shaft has a spiral groove which pumps oil under pressure into the gap.
- no slits cut in the bronze bushing to allow it to compress evenly etc. Instead some material is removed from the outside allowing it to deform when pulled in by the nut. As a result a lot of force is required to adjust it. Also the bushing is far from circular, but it appears to work well.
I have the usual assortment of dial and test indicators that measure down to a micron.
Edit: Alternatively, perhaps someone knows what the clearance for the oil film should be in such bearing? It runs as 2700rpm. The bore is 35mm (1.377in) and it uses iso vg 6 oil. Currently I have 30 microns of clearance and using my flawed measuring methods it seems the running TIR is ~8 microns.
Notice
This website or its third-party tools process personal data (e.g. browsing data or IP addresses) and use cookies or other identifiers, which are necessary for its functioning and required to achieve the purposes illustrated in the cookie policy. To learn more, please refer to the cookie policy. In case of sale of your personal information, you may opt out by sending us an email via our Contact Us page. To find out more about the categories of personal information collected and the purposes for which such information will be used, please refer to our privacy policy. You accept the use of cookies or other identifiers by closing or dismissing this notice, by scrolling this page, by clicking a link or button or by continuing to browse otherwise.